Lecture Seven (Notes) – Linked Lists And Binary Trees

What these lecture notes cover:

· Linked Lists

· Binary trees (briefly)

1Lecture Seven (Notes) – Linked Lists And Binary Trees

1What these lecture notes cover:

1Structs which contain themselves

2A common Data Structure – the linked list

3Linked lists in some detail

3Adding a name

4Listing all names in the book

4Freeing up the memory

4Deleting an item from the list

5Inserting into the centre of a linked list

6Linked list things to NEVER do (this applies to C in general)

6Binary Tree

8Complete listing for our address book example

More information about the techniques linked list and binary trees in this lecture and C code to execute these algorithms and more can be found in http://epaperpress.com/sortsearch/
Structs which contain themselves

For obvious reasons, we can't include a struct of the same type within itself [and nor can we have mutually inclusive structs – two structs both of which include each other]. Such a self including structure would have infinite size!

struct silly_struct { /* This doesn't work */

 int silly_num;

 struct silly_struct s1;

};

However, a struct can include a pointer to a struct of the same type. Why would you want to do this? Well, here's one example. We might be writing a program to store information for a dictionary and we might want each word to have a number of synonyms between 1 and 3. The synonyms, of course, are themselves words and therefore a good way to represent them might be . Here's how we'd write such a struct:

typedef struct dict_word {

 char word[40];

 char definition[1000];

 int part_of_speech;

 struct dict_word *synonym1;

 struct dict_word *synonym2;

 struct dict_word *synonym3;

} DICT_WORD;

We can access the synonyms as follows:

DICT_WORD *word1;

.

. /* Stuff to set up dictionary */

.

printf ("First synonym of %s is %s\n", word1->word,

 word1->synonym1->word);

IMPORTANT RULE: We can de-reference multiple levels of pointers with multiple uses of ->.

A common Data Structure – the linked list

The ability to include pointers to a struct within itself leads to a number of important data structures which programmers can use. The most basic of these is the linked list. A graphical illustration might help.

[image: image1.wmf]head_of_list

information

nextptr

information

nextptr

information

nextptr= NULL

The linked list structure will look something like this:

typedef struct list_item {

 information

 struct list_item *nextptr;

} LIST_ITEM;

The idea is that we store a pointer to the first item in the list. The first item in the list stores a pointer to the second in nextptr. The second stores a pointer to the third etc. The last item in the list has its nextptr set to NULL so that we know where the list ends. [Recall that NULL is a special value in C used to indicate conditions like end of file, or error. It is convenient for C programmers to set a pointer which doesn't point to anything (yet) to NULL. That way we can test if a pointer is equal to NULL before trying to follow it.] As long as we keep track of head_of_list we can access all the info in the list from that single pointer.

So why would we use a linked list instead of an array? Well there are a number of advantages:

1) We can add items at the head of the list very easily (simply change head_of_list to point at our new item and change the nextptr of the head_of_list to point at the old head_of_list).

2) We can add items in the middle of the list quite easily (if we add an item in the middle of an array we have to shuffle everyone up one).

3) We can make the list bigger without calling realloc.

On the other hand, it has some disadvantages compared to the array:

1) It's more complicated. [Don't underestimate this – the simpler the better is a good rule of thumb for programming. If an array does what you want then don't consider anything more complex.]

2) It's hard work to access the nth element of a linked list. (You have to start at the first and work down).

3) It's slightly bigger (since each element has the info being stored and the pointer).

We will look at programming with linked lists in the lecture. For now, here's some code which would wander down the linked list we showed above:

LIST_ITEM *tmpptr;

tmpptr= head_of_list;

while (tmpptr != NULL) {

 /* Do something with list item pointed to by tmpptr*/

 tmpptr= tmpptr->nextptr;

}

Linked lists in some detail

Let's look at how we would define a linked list (the example we're going to talk about is an address book – in this case the world's worst address book since it has no save facility):

typedef struct list {

 char name[MAXLEN];

 char address[MAXLEN];

 char phone[MAXLEN];

 struct list *next;

} ADDRESS;
Points to notice - we need to use struct list rather than ADDRESS since the typedef statement isn't actually complete yet. A complete listing of the address book program is at the end of the lecture.

Recall that in a linked list, we can reference the entire list from a single pointer – in this case we're going to call it hol for head of list and make it a global:

ADDRESS *hol= NULL; /* Head of our linked list of addresses -

 global variable*/

int main()

{

.

.

.

For an address book, we would like functions to add a new name to our book, print the address and phone number associated with a name, delete a name and list all names in the book.

Adding a name

In this example, we are storing the address book as an unordered (non-alphabetical) list of names. Therefore, inserting a name is actually quite easy. We can simply make the new item the head of the list and make it point at the previous head of list:

void add_to_list (void)

/* Add a new name to our address book */

{

 ADDRESS *new_name;

 new_name= (ADDRESS *)malloc (sizeof (ADDRESS));

 if (new_name == NULL) {

 printf ("Out of memory!\n");

 exit (-1);

 }

 /* Get input for the new item */

 printf ("Name> ");

 fgets (new_name->name, MAXLEN, stdin);

 printf ("Address> ");

 fgets (new_name->address, MAXLEN, stdin);

 printf ("Tel> ");

 fgets (new_name->phone, MAXLEN, stdin);

 /* Chain the new item into the list */

 new_name->next= hol;

 hol= new_name;

}
This is obviously an O(1) operation. No matter how large the list is this doesn't get more complex.

Listing all names in the book

void list_names (void)

/* List all names in the book */

{

 ADDRESS *tmp_ptr; /* Traverses list */

 printf ("All names in address book:\n");

 tmp_ptr= hol;

 while (tmp_ptr != NULL) {

 printf ("%s",tmp_ptr->name);

 tmp_ptr= tmp_ptr->next;

 }

}

We point at the head of the list. While what we are pointing at is not NULL, we print the name we are pointing at and move to point at the next thing. This is an O(n) operation. Printing a specific name from the book works in a similar manner but we traverse the list only until we find a name we are looking for.

Freeing up the memory

Here's how we free the memory. Point at the head of the list and store this in a temporary pointer. Move the head of the list on to the next item. Free the memory in the temporary pointer. Note that it's very important to do it in that order. Freeing the memory and then finding the next pointer would be VERY bad since it would involve looking at the contents of memory we've already freed.

void free_list (void)

/* Free memory for list */

{

 ADDRESS *del_ptr; /* Pointer to part to delete */

 while (hol != NULL) {

 del_ptr= hol; /* Store the head of list */

 hol= hol->next; /* Move on to the next bit */

 free(del_ptr); /* Free the memort for the bit we just left */

 }

}
Deleting an item from the list
void delete_from_list (void)

/* Remove a name from the address book */

{

 ADDRESS *del_ptr; /* Pointer to find name to delete */

 ADDRESS *prev_ptr; /* Pointer to name BEFORE this name */

 char del_name[MAXLEN]; /* Name to delete */

 printf ("Name> ");

 fgets (del_name, MAXLEN, stdin);

 /* The first item in the list being deleted is a special case */

 if (hol == NULL) {

 printf ("No list to delete from\n");

 return;

 }

 /* If the first name is the correct one then move the head of list on

 to the next head of list */

 if (strcmp(hol->name, del_name) == 0) {

 del_ptr= hol;

 hol= hol->next;

 free(del_ptr);

 return;

 }

 /* Otherwise loop round the list looking for the name */

 prev_ptr= hol;

 while (prev_ptr->next != NULL) {

 /* We've found the name so delete it */

 if (strcmp(prev_ptr->next->name,del_name) == 0) {

 del_ptr= prev_ptr->next;

 prev_ptr->next= del_ptr->next;

 free(del_ptr);

 return;

 }

 prev_ptr= prev_ptr->next;

 }

 printf ("Name not found!\n");

}

This is a little more complex. We need to deal with the special situation that the head of the list is the item that we wish to delete (and also that there is no list). Having done this we look around for a pointer who's NEXT pointer has the name we're looking for. Why? Because that is the pointer we need to change. A diagram may help:

[image: image2.wmf]D

hol

NULL

D

hol

NULL

hol

NULL

We must find the pointer call it A which has D (the pointer to be deleted) following it. We save a pointer to D. Then we point A at the pointer after D. Finally, we free the memory for D. Phew!

Removing the pointer is an O(1) operation but finding and removing it is O(n).

Inserting into the centre of a linked list
If we wanted to maintain an ordered linked list – after all, an address book is usually alphabetical – then we can do this simply by ensuring that we always insert our address in the correct place. In many ways this is the opposite of the delete operation. We must find a pointer (call it A) which is earlier in the alphabet than our pointer but whose next pointer is later. (Note that we must also deal with the special cases of our insertion being at the start of the list and at the end of the list). To insert the new item we must make A point at it and we must make it point at the pointer after A. Simple!

Linked list things to NEVER do (this applies to C in general)
Never follow a NULL pointer. For example:

hol= hol->next; is only safe if you know that hol is not NULL. NULL->next will usually crash your program.

Never free a pointer then try to access it (you risk accessing random bits of memory).

Never cut a pointer out of the list and forget to free it (you will certainly have a memory leak).

Binary Tree
If we want to hold and search an ordered list of items then better than a linked list is a binary tree. We can typedef a binary tree structure for a dictionary like so:

typedef struct tree {

 char word[MAXLEN];

 struct tree *left;

 struct tree *right;

} TREE;

As you can see, this is very similar to our definition for a linked list but has two pointers. The pointer to the left holds a word earlier in the alphabet and the one to the right holds a word later in the alphabet. As we add words, it is a question of moving left down the tree if the word is earlier and right if it is later. As before we can have a head of tree pointer to refer to the whole structure. Let's look at an example:

[image: image3.wmf]Let me not to the marriage of true minds admit impediment

Let

Me

Not

To

The

Marriage

Of

True

Minds

Admit

Impediment

Let

Let

Me

Let

Me

Not

To

Let

Me

Not

Let

Me

Not

To

The

Let

Me

Not

To

The

Marriage

1

2

3

4

5

6

Finally

Remember that every left or right connection not shown above must be to NULL.

Binary trees look intimidating but are actually surprisingly easy to work with once you get the idea. Here's some pseudocode for inserting a possible new object in our binary tree – assume that the left and right pointers of our new item are both NULL if it is inserted into the tree.

1) Set pointer A to head of tree (if head of tree doesn't exist then our new object becomes head of tree and we stop here).

2) If pointer A is our item then we have found our item, stop here.

3) If our item is earlier in the alphabet then look at the left pointer.

 a) If the left pointer is NULL then make the left pointer point to our new item

 b) Set pointer A to the left pointer and go to 2.

4) Our item must be later in the alphabet (it isn't the same or earlier) so look at the right pointer.

 a) If the right pointer is NULL then make the right pointer point to our new item

 b) Set pointer B to the right pointer and go to 2.

Inserting an item into a binary tree is O(log n) rather than O(n) with an ordered linked list or an array. The same is true of searching for an item in a binary tree. It is worth pointing out, though that the worst case for a binary tree, when the data is already ordered, it is effectively already a linked list and therefore O(n).

Deleting an item from a binary tree can be surprisingly complex – consider deleting LET from the tree example earlier. Deleting the entire binary tree, however, is remarkably easy. Consider this code:

void delete_tree (TREE *);

/* Function to delete a binary tree */

delete_tree (root_of_tree); /* Root of tree is the same as hol

 earlier but for a tree */

void delete_tree (TREE *tree_ptr)

/* Delete a binary tree */

{

 if (tree_ptr == NULL)

 return;

 delete_tree(tree_ptr->left);

 delete_tree(tree_ptr->right);

 free(tree_ptr);

}
Complete listing for our address book example

Note that for quickness, there is no save/load facility and all string comparisons are case and space sensitive. Annoying in an address book I admit – but this is only an example.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

enum {

 MAXLEN=255

};

typedef struct list {

 char name[MAXLEN];

 char address[MAXLEN];

 char phone[MAXLEN];

 struct list *next;

} ADDRESS;

void add_to_list (void); /* Add a name to our address book */

void delete_from_list (void);/* Delete a name from our book */

void print_name (void); /* Print an entry in the address book */

void list_names (void); /* List all the names in the book */

void free_list (void); /* Free all the linked list */

ADDRESS *hol= NULL; /* Head of our linked list of addresses -

 global variable*/

int main()

{

 char input[MAXLEN]; /* Input from the user */

 while (1) {

 printf ("(A)dd/(D)elete/(P)rint/(L)ist/(Q)uit\n");

 fgets (input, MAXLEN,stdin);

 switch (input[0]) {

 case ('a'):

 case ('A'):

 add_to_list();

 break;

 case ('d'):

 case ('D'):

 delete_from_list();

 break;

 case ('p'):

 case ('P'):

 print_name();

 break;

 case ('l'):

 case ('L'):

 list_names();

 break;

 case ('q'):

 case ('Q'):

 free_list();

 return (0);

 default:

 printf ("Unknown command\n");

 }

 }

 return 0;

}

void add_to_list (void)

/* Add a new name to our address book */

{

 ADDRESS *new_name;

 new_name= (ADDRESS *)malloc (sizeof (ADDRESS));

 if (new_name == NULL) {

 printf ("Out of memory!\n");

 exit (-1);

 }

 /* Get input for the new item */

 printf ("Name> ");

 fgets (new_name->name, MAXLEN, stdin);

 printf ("Address> ");

 fgets (new_name->address, MAXLEN, stdin);

 printf ("Tel> ");

 fgets (new_name->phone, MAXLEN, stdin);

 /* Chain the new item into the list */

 new_name->next= hol;

 hol= new_name;

}

void delete_from_list (void)

/* Remove a name from the address book */

{

 ADDRESS *del_ptr; /* Pointer to find name to delete */

 ADDRESS *prev_ptr; /* Pointer to name BEFORE this name */

 char del_name[MAXLEN]; /* Name to delete */

 printf ("Name> ");

 fgets (del_name, MAXLEN, stdin);

 /* The first item in the list being deleted is a special case */

 if (hol == NULL) {

 printf ("No list to delete from\n");

 return;

 }

 /* If the first name is the correct one then move the head of list on to the next head of list */

 if (strcmp(hol->name, del_name) == 0) {

 del_ptr= hol;

 hol= hol->next;

 free(del_ptr);

 return;

 }

 /* Otherwise loop round the list looking for the name */

 prev_ptr= hol;

 while (prev_ptr->next != NULL) {

 /* We've found the name so delete it */

 if (strcmp(prev_ptr->next->name,del_name) == 0) {

 del_ptr= prev_ptr->next;

 prev_ptr->next= del_ptr->next;

 free(del_ptr);

 return;

 }

 prev_ptr= prev_ptr->next;

 }

 printf ("Name not found!\n");

}

void print_name (void)

/* Print a name from the list */

{

 char name[MAXLEN]; /* Name to look for */

 ADDRESS *search_ptr; /* Pointer to search list for name */

 printf ("Name> ");

 fgets (name, MAXLEN, stdin);

 search_ptr= hol;

 while (search_ptr != NULL) {

 if (strcmp (search_ptr->name, name) == 0) {

 printf ("Address: %s", search_ptr->address);

 printf ("Tel: %s", search_ptr->phone);

 return;

 }

 search_ptr= search_ptr->next; /* Move to next item */

 }

 printf ("No such name\n");

}

void list_names (void)

/* List all names in the book */

{

 ADDRESS *tmp_ptr; /* Traverses list */

 printf ("All names in address book:\n");

 tmp_ptr= hol;

 while (tmp_ptr != NULL) {

 printf ("%s",tmp_ptr->name);

 tmp_ptr= tmp_ptr->next;

 }

}

void free_list (void)

/* Free memory for list */

{

 ADDRESS *del_ptr; /* Pointer to part to delete */

 while (hol != NULL) {

 del_ptr= hol; /* Store the head of list */

 hol= hol->next; /* Move on to the next bit */

 free(del_ptr); /* Free the memory for the bit we just left */

 }

}

PAGE
2

_1036267950.unknown

_1036271645.unknown

_1000376629.doc

head_of_list

information

nextptr

information

nextptr

information

nextptr= NULL

