Lecture Six (Notes) – Error Checking and Programming Style

What these lecture notes cover

These lecture notes should cover the following topics:

· Error checking in C.

· "Wrappered" functions.

· Writing a clean interface.

1Lecture Six (Notes) – Error Checking and Programming Style

1What these lecture notes cover

1Error checking in programs

2Wrappered functions

3How to write a clean interface

Error checking in programs

We already know that files can be opened and closed using the fopen and fclose functions. These functions rely on the FILE * pointer type which is defined in stdio.h. To recap:

#include <stdio.h>

#define F_NAME "my_file.txt"

int main()

{

 FILE *fptr; /* Set up a file pointer */

 fptr= fopen (F_NAME,"w"); /* Try to open the file */

 if (fptr == NULL) { /* Check the file is opened */

 fprintf (stderr,"Unable to open file\n");

 return –1;

 }

 fprintf (fptr,"Hello file\n");

 fclose (fptr);

 return 0;

}

This tiny program shows an important aspect for the programmer: error checking. It would be easy for a novice programmer to forget this check and, many times, the program would work perfectly well without it. A virtuous programmer makes sure that a program checks for errors whenever it calls a function with a chance of failing. Functions which are likely to fail include:

1) Opening files.

2) Getting user input.

3) Allocating memory (malloc or realloc).

Of course there's always the chance of an obscure failure – for example, if someone deleted a file between the time you create it for writing and the time you write to it. You can't check for every contingency so, unless you have reason to suspect that files might be deleted while open, (for example, if you're writing a filing system used by multiple users at once) then ignore the more obscure possibilities. However, we are left with an important principle:

IMPORTANT RULE: Your program should always exit gracefully even if the user types the wrong thing or the files are missing or can't be written to.

There's little that's more likely to convince a user that the programmer is an idiot than a program which crashes because they typed –3 instead of 3.

Sometimes we might find a problem opening or reading from a file deep within a function. If we want to immediately stop a program then we can use the exit function as described earlier.
Wrappered functions

It's certainly a bit of a pain having to type all that error checking faff every time you want to allocate a bit of memory. Programming is meant to be a way to save work not create it. Isn't there an easier way? In fact there is. Some programmers like to wrapper their malloc in this way:

#include<stdlib.h>

void *safe_malloc (size_t, char *);

/* Error checking malloc function*/
void *safe_malloc (size_t size, char *location)

{

 void *ptr;

 ptr= malloc(size);

 if (ptr == NULL) {

 fprintf (stderr,"Out of memory at function: %s\n",location);

 exit(-1);

 }

 return ptr;

}

This function can then be called like your normal malloc but will automatically check memory like so:

void get_n_ints(int n)

{

 int *array;

 array= (int *)safe_malloc(n * sizeof(int), "get_n_ints()");

 .

 .

 .

}

[You might be worrying about that size_t type in the declaration of safe_malloc. size_t is a type declared in stdlib.h which holds memory sizes used by memory allocation functions – it is the type returned by the sizeof operation.]

[A final point worth mentioning related to safe_malloc is the special variables __LINE__ and __FILE__ which are used to indicate a line number and a file name. They are put in by the pre-processor and are replaced by, respectively, an int which is the line number where the __LINE__ tag occurs and a string which is the name of the file. Therefore a commonly used version is as follows]

#include<stdlib.h>

void *safe_malloc (size_t);

/* Error trapping malloc wrapper */

void *safe_malloc (size_t size)

/* Allocate memory or print an error and exit */

{

 void *ptr;

 ptr= malloc(size);

 if (ptr == NULL) {

 fprintf (stderr, "Out of memory at line %d file %s\n",

__LINE__, __FILE__);

 exit(-1);

 }

 return ptr;

}
You might also decide you want to use your own special wrappered file open function. The word wrapper comes from the fact that we really WANT to use just the malloc function but we want to wrap around that a layer of error checking.

How to write a clean interface
Talking about programs in multiple files leads us naturally onto the topic of the clean interface – one of the many things that separates a programmer from a good programmer. By interface in this sense we don't mean how the user inputs information into the computer but how the we access the code in each of the modules. Let's imagine that we are writing the fileio.c part of the pay packet program described above and other programmers are working on different parts of the program. We need to decide what functions we will let those other programmers use for our file access part of the program.

That is, we need to provide those other programmers with an interface to our code. When we design this interface we need to write one or more functions that will allow access to this section of the code. In this case, for example, we might decide to provide four functions: write_record, read_record, add_record and delete_record. (Where write_record would over-write an old file but add_record would create a new one).

The basic rules of an interface is that it should be simple, consistent and predictable.

In this case, simple means that the functions should be as easy as possible to use with as little possible knowledge of how they work. A good example of this is the FILE *functions in C which you can normally use without knowing anything about what is actually in the FILE structure. One possible write_record function would be:

void write_record (FILE *fptr, char name[], int wage, int hire_date);

however, we might have to add arguments to this function, for example if we decide we need to know the date of birth or some tax code information – also we have to open the file before calling it and close it afterwards – not too much of a problem if we only call the function at one place in the program but irritating if we have to call this function from a lot of places. A final problem is that there is no way for this function to tell us if there's a problem writing. A simpler interface might be provided by:

int write_record (char fname[], LECTURER *lect)

/* Returns 0, for success –1 for failure */

where fname is the name of the file to write to and the LECTURER structure represents all the arguments of the previous function. The return value of the function is an int which is 0 for success and non-zero for failure.

By consistent we mean that our functions all tend to have the same style where possible. For example, if we wrote write_record as above it would be peculiar to write add_record as:

/* This is a bit perverse*/

int add_record (LECTURER *lect, char fname[])

/* Returns –1 for success, 0 for failure */

If you write code like this then other programmers will be justified in doing you injury since every time they call one of your routines they will have to remember which way round you do things this time! Of course consistency can only be taken so far. It might make sense to write the read function differently:

LECTURER *read_record(char fname[])

/* Returns a pointer to the record stored in fname or NULL if there's an error */

Finally, predictability – in this case, by predictability, we mean that your functions don't change things unnecessarily. For example, when writing the write_record function we would want to be sure that we didn't change the string stored in fname without very good reason. Your users might be quite startled if you do because they would expect code like this to work:

char fname[80]= "new_file.dat";

if (write_record (fname, lecturer) == -1) {

 printf ("Failure to open file %s\n",fname);

}

Now if you've changed the information stored in fname then this seemingly innocent bit of code would print out nonsense.

PAGE
3

