Lecture Six (Notes) – Some Thoughts About Style Efficiency And Safety

What these lecture notes cover

These lecture notes should cover the following topics:

· Error checking in C.

· "Wrappered" functions.

· Writing a clean interface.

· Efficient coding

· Structures which contain themselves.

· An advanced data structure – the linked list
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Error checking in programs

We already know that files can be opened and closed using the fopen and fclose functions.  These functions rely on the FILE * pointer type which is defined in stdio.h.  To recap:

#include <stdio.h>

#define F_NAME "my_file.txt"

int main()

{

    FILE *fptr;  /* Set up a file pointer */

    fptr= fopen (F_NAME,"w");  /* Try to open the file */

    if (fptr == NULL) {              /* Check the file is opened */

        fprintf (stderr,"Unable to open file\n");

        return –1;

    }

    fprintf (fptr,"Hello file\n");

    fclose (fptr);

    return 0;

}

This tiny program shows an important aspect for the programmer: error checking.  It would be easy for a novice programmer to forget this check and, many times, the program would work perfectly well without it.  A virtuous programmer makes sure that a program checks for errors whenever it calls a function with a chance of failing.  Functions which are likely to fail include:

1) Opening files.

2) Getting user input.

3) Allocating memory (malloc or realloc).

Of course there's always the chance of an obscure failure – for example, if someone deleted a file between the time you create it for writing and the time you write to it.  You can't check for every contingency so, unless you have reason to suspect that files might be deleted while open, (for example, if you're writing a filing system used by multiple users at once) then ignore the more obscure possibilities.  However, we are left with an important principle:

IMPORTANT RULE: Your program should always exit gracefully even if the user types the wrong thing or the files are missing or can't be written to.

There's little that's more likely to convince a user that the programmer is an idiot than a program which crashes because they typed –3 instead of 3.

Sometimes we might find a problem opening or reading from a file deep within a function.  If we want to immediately stop a program then we can use the exit function as described earlier.
Wrappered functions

It's certainly a bit of a pain having to type all that error checking faff every time you want to allocate a bit of memory.  Programming is meant to be a way to save work not create it.  Isn't there an easier way?  In fact there is.  Some programmers like to wrapper their malloc in this way:

#include<stdlib.h>

void *safe_malloc (size_t, char *);

/* Error checking malloc function*/
void *safe_malloc (size_t size, char *location)

{

    void *ptr;

    ptr= malloc(size);

    if (ptr == NULL) {

        fprintf (stderr,"Out of memory at function: %s\n",location);

        exit(-1);

    }

    return ptr;

}

This function can then be called like your normal malloc but will automatically check memory like so:

void get_n_ints(int n)

{

    int *array;

    array= (int *)safe_malloc(n * sizeof(int), "get_n_ints()");

    .

    .

    .

}

[You might be worrying about that size_t type in the declaration of safe_malloc.  size_t is a type declared in stdlib.h which holds memory sizes used by memory allocation functions – it is the type returned by the sizeof operation.]

[A final point worth mentioning related to safe_malloc is the special variables __LINE__ and __FILE__ which are used to indicate a line number and a file name.  They are put in by the pre-processor and are replaced by, respectively, an int which is the line number where the __LINE__ tag occurs and a string which is the name of the file.  Therefore a commonly used version is as follows] 

#include<stdlib.h>

void *safe_malloc (size_t);

/* Error trapping malloc wrapper */

void *safe_malloc (size_t size)

/* Allocate memory or print an error and exit */

{

    void *ptr;

    ptr= malloc(size);

    if (ptr == NULL) {

        fprintf (stderr, "Out of memory at line %d file %s\n",

__LINE__, __FILE__);

        exit(-1);

    }

    return ptr;

}
You might also decide you want to use your own special wrappered file open function.  The word wrapper comes from the fact that we really WANT to use just the malloc function but we want to wrap around that a layer of error checking.

How to write a clean interface
Talking about programs in multiple files leads us naturally onto the topic of the clean interface – one of the many things that separates a programmer from a good programmer.  By interface in this sense we don't mean how the user inputs information into the computer but how the we access the code in each of the modules.  Let's imagine that we are writing the fileio.c part of the pay packet program described above and other programmers are working on different parts of the program.  We need to decide what functions we will let those other programmers use for our file access part of the program.

That is, we need to provide those other programmers with an interface to our code.  When we design this interface we need to write one or more functions that will allow access to this section of the code.  In this case, for example, we might decide to provide four functions: write_record, read_record, add_record and delete_record.  (Where write_record would over-write an old file but add_record would create a new one).

The basic rules of an interface is that it should be simple, consistent and  predictable.  

In this case, simple means that the functions should be as easy as possible to use with as little possible knowledge of how they work.  A good example of this is the FILE *functions in C which you can normally use without knowing anything about what is actually in the FILE structure.  One possible write_record function would be:

void write_record (FILE *fptr, char name[], int wage, int hire_date);

however, we might have to add arguments to this function, for example if we decide we need to know the date of birth or some tax code information – also we have to open the file before calling it and close it afterwards – not too much of a problem if we only call the function at one place in the program but irritating if we have to call this function from a lot of places.  A final problem is that there is no way for this function to tell us if there's a problem writing.  A simpler interface might be provided by:

int write_record (char fname[], LECTURER *lect)

/* Returns 0, for success –1 for failure */

where fname is the name of the file to write to and the LECTURER structure represents all the arguments of the previous function.  The return value of the function is an int  which is 0 for success and non-zero for failure.

By consistent we mean that our functions all tend to have the same style where possible.  For example, if we wrote write_record as above it would be peculiar to write add_record as:

/* This is a bit perverse*/

int add_record (LECTURER *lect, char fname[])  

/* Returns –1 for success, 0 for failure */

If you write code like this then other programmers will be justified in doing you injury since every time they call one of your routines they will have to remember which way round you do things this time!  Of course consistency can only be taken so far.  It might make sense to write the read function differently:

LECTURER *read_record(char fname[])

/* Returns a pointer to the record stored in fname or NULL if there's an error */

Finally, predictability – in this case, by predictability, we mean that your functions don't change things unnecessarily.  For example, when writing the write_record function we would want to be sure that we didn't change the string stored in fname without very good reason.  Your users might be quite startled if you do because they would expect code like this to work:

char fname[80]= "new_file.dat";

if (write_record (fname, lecturer) == -1) {

    printf ("Failure to open file %s\n",fname);    

}

Now if you've changed the information stored in fname then this seemingly innocent bit of code would print out nonsense.

Classifying the execution time of an algorithm

I have talked a lot in this course about efficiency but not really about how to measure efficiency.  In the end, there are only two worthwhile measures of efficiency, how quickly a program runs and how much memory the program takes up.  However, usually when we consider two rival techniques, we don't have the luxury of being able to code both and see which is better.  One way of contemplating which algorithmic approach is the more efficient is using the O-notation.  With the O-notation we specify a function representing the execution time of an algorithm as n increases where n is the number of items we are using the algorithm on.  We will specify the execution time as O(f(n)) so, for example:

O(n) means that the execution time increases as n.

O(log (n) ) means that the execution time increases as the log of n

O(n!) means that the execution time increases as the factorial of n

Formally xn = O(f(n)) means that there are positive constants M and n0 such that |xn| ( M |f(n)| for all integers  n ( n0.

It should be noted that, for example, y = O(n) implies y = O (n2) but the former is the stronger statement.  Generally speaking, when we specify the execution time of an algorithm using the O-notation we state in the strongest terms we can.

For more information about the O-notation look at Knuth's "The Art of Computer Programming" Volume 1.  In the remainder of this lecture we shall be loosely thinking of the O-notation as "how does the execution time increase as n increases".  For example, O(n) means "if n doubles then execution time doubles" whereas O(n2) means "if n doubles then execution time goes up by a factor of 4".

Examples of the O-notation in practice:

Imagine we have an array of numbers into which we wish to insert a single number at a given place:


[image: image1.wmf]1

 

1

 

           

 

2

 

3

 

5

 

7

 

8

 

8

 

9

 

9

 

4

 

Insert new

 

number 

here

 

3

 

 

 

 

Blank bits 

of array

 



[image: image2.wmf]1

 

1

 

           

 

2

 

3

 

5

 

7

 

8

 

8

 

9

 

4

 

These numbers 

have to be moved

 

3

 

9

 

 

 

Blank bits 

of array

 


If we insert a number into a random place in an n element array then we will, on average, have to shuffle n/2 items along the array.  So we can say that the execution time = O(n).  (The factor of 2 is dropped since O(n/2) = O(n) – remember that factor M in the equation).  On the other hand, to access an element of the array, we simply have to take its index in the array.  That is to say, accessing part of an array is O(1) and doesn't get larger as the array gets larger.  This may seem obvious but for a linked list we shall see that the insertion operation is O(1) and the access operation is O(n).

Weaknesses of the O-notation

There are a number of problems with the O-notation.

1) It does not account for memory usage.

2) It does not account for programming complexity.

3) It tells us which of two algorithms would be most efficient if we have an infinite data set – we don't have an infinite data set.

4) If we come up with a brilliant saving which cuts the execution time of our code to 1% of what it once was then we haven't changed it's O(n) whatsoever.  (Look again at that M in the equation).

5) In any case we might not know what O(n) is.

The importance of the O-notation

	n
	lg n
	n lg n
	n1.25
	n2

	1
	0
	0
	1
	1

	16
	4
	64
	32
	256

	256
	8
	2,048
	1,024
	65,536

	4,096
	12
	49,152
	32,768
	16,777,216

	65,536
	16
	1,048,565
	1,048,476
	4,294,967,296

	1,048,476
	20
	20,969,520
	33,554,432
	1,099,301,922,576

	16,775,616
	24
	402,614,784
	1,073,613,825
	281,421,292,179,456


The importance of the O-notation can be seen by viewing these tables consider, for example, the efficiency gains of an algorithm going as O(n) versus one going as O(log n).

Tips for efficiency

Less characters typed does not make code more efficient.  We can make C awfully dense.  Consider the following code to read in 100 lines of text:

FILE *fptr;

int i= 0;

char array[100][100];

if (!fptr= fopen ("file.txt","r"))

     exit(-1);

while (i < 100 && fgets(array[i++],100, fptr));

It may be short – but it's more than a little confusing to novice programmers – and many C programs can be made worse and more confusing.  Much better to take ten lines and spell things out.  After all, you wouldn't say someone was a better programmer if they missed out all comments on the grounds that it was shorter to type.  It's better to spell things out in full.  If you're interested in hard to read code then the "Obfuscated C contest" seeks to find the most convoluted and impossible to understand C programs.

If you can do it then use floats not doubles and chars not ints.  Those data types are "shorter" and therefore take less memory.  Operations on floats are quicker than on doubles.

Sometimes we can trade memory for speed of execution.  Consider the sieve of Eratosthenese versus our first "is_prime" function.  If we were calculating prime numbers a lot then the sieve would be very helpful since we wouldn't have to recalculate which numbers are prime.  On the other hand, the is_prime function took less memory.

Know what takes time on the computer – allocating and freeing memory can take a lot of time if you do it too much.  File access is very slow.  If you are analysing all elements in a large file then either 

a) Do all the work in one pass or

b) Read it into memory and work with it in memory (if it's not too large)

Structs which contain themselves

For obvious reasons, we can't include a struct of the same type within itself [and nor can we have mutually inclusive structs – two structs both of which include each other].  Such a self including structure would have infinite size!

struct silly_struct {   /* This doesn't work */

    int silly_num;

    struct silly_struct s1;

};

However, a struct can include a pointer to a struct of the same type.  Why would you want to do this?  Well, here's one example.  We might be writing a program to store information for a dictionary and we might want each word to have a number of synonyms between 1 and 3.  The synonyms, of course, are themselves words and therefore a good way to represent them might be .  Here's how we'd write such a struct:

typedef struct dict_word {

    char word[40];

    char definition[1000];

    int part_of_speech;  

    struct dict_word *synonym1;

    struct dict_word *synonym2;

    struct dict_word *synonym3;

} DICT_WORD;

We can access the synonyms as follows:

DICT_WORD *word1;

.

.  /* Stuff to set up dictionary */

.

printf ("First synonym of %s is %s\n", word1->word, 

      word1->synonym1->word);

IMPORTANT RULE:  We can de-reference multiple levels of pointers with multiple uses of ->. 

A common Data Structure – the linked list 

The ability to include pointers to a struct within itself leads to a number of important data structures which programmers can use.  The most basic of these is the linked list.  A graphical illustration might help.
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The linked list structure will look something like this:

typedef struct list_item {

    information

    struct list_item *nextptr;

} LIST_ITEM;

The idea is that we store a pointer to the first item in the list.  The first item in the list stores a pointer to the second in nextptr.  The second stores a pointer to the third etc.  The last item in the list has its nextptr set to NULL so that we know where the list ends.  [Recall that NULL is a special value in C used to indicate conditions like end of file, or error.  It is convenient for C programmers to set a pointer which doesn't point to anything (yet) to NULL.  That way we can test if a pointer is equal to NULL before trying to follow it.]  As long as we keep track of head_of_list we can access all the info in the list from that single pointer.

So why would we use a linked list instead of an array?  Well there are a number of advantages:

1) We can add items at the head of the list very easily (simply change head_of_list to point at our new item and change the nextptr of the head_of_list to point at the old head_of_list). 

2) We can add items in the middle of the list quite easily (if we add an item in the middle of an array we have to shuffle everyone up one).

3) We can make the list bigger without calling realloc.

On the other hand, it has some disadvantages compared to the array:


1) It's more complicated.  [Don't underestimate this – the simpler the better is a good rule of thumb for programming.  If an array does what you want then don't consider anything more complex.]

2) It's hard work to access the nth element of a linked list.  (You have to start at the first and work down).

3) It's slightly bigger (since each element has the info being stored and the pointer).

We will look at programming with linked lists in the lecture.  For now, here's some code which would wander down the linked list we showed above:

LIST_ITEM *tmpptr;

tmpptr= head_of_list;

while (tmpptr != NULL) {

    /* Do something with list item pointed to by tmpptr*/

    tmpptr= tmpptr->nextptr;

}

PAGE  
8

_1036254314.unknown

_1036254387.unknown

_1000376629.doc


head_of_list







information







nextptr















information







nextptr















information







nextptr= NULL
















