Lecture Four – Multi-Dimensional Arrays and Multiple File Programming

What these lecture notes cover

These lecture notes should cover the following topics:

· Multiple dimensional arrays.

· Pointers to structures.

· Pointer arithmetic.

· Header files and what to put in them.

· Multiple file programming.

· A recap of new language features from lecture four

1Lecture Four – Multi-Dimensional Arrays and Multiple File Programming

1What these lecture notes cover

2Multi dimensional arrays in C

2Arrays of structures

3Even more complex structures within structures

3Pointer Arithmetic

4Pointers to struct

6Header files and what to put into them

6Writing programs in multiple file

8A recap of syntax learned in week four

Multi dimensional arrays in C
We can declare arrays with more than one dimension in C. For example:

int array [3][6];

int array2[3][6] = {

 {4,5,6,7,8,9},

 {1,5,6,8,2,4},

 {0,4,4,3,1,1}

};

Such arrays are accessed like so:

array[1][4]= -2;

if (array[2][1] > 0) {

 printf ("Element [2][1] is %d", array[2][1]);

}

Remember that, like ordinary arrays, multi-dimensional arrays are numbered from 0. Therefore, the array above has elements from array[0][0] to array[2][5].

CAUTION: A common beginner mistake is to attempt to access array elements using the syntax array[1,4]= -2;

When we pass multi-dimensional arrays to functions or use a prototye, we must include the size of the array in the prototype. E.g.

void process_array (int [3][6]);

void process_array (int array[3][6])

{

.

.

.

}

CAUTION: It's easy to become confused here. The above function body defines a function which takes as an argument a 3 by 6 array of int. However, if we call it with:

process_array (array[3][6]);

Then we will cause a problem as this will not pass the array – this will attempt to pass the element [3][6] of the array – which is out of range anyway if the array is [3][6].

Multi-dimensional arrays are actually quite rare in C – an array of pointers is more common and more useful.

It is worth mentioning that char [3][10]; declares 3 strings 10 characters long not 10 strings 3 characters long.

NOTE FOR EXPERTS: Technically, we only really need to specify the first of the dimensions of the array for reasons which may become clear later.

Arrays of structures

Remember from previous lectures and worksheets that structures extend the C language by, for example, providing imaginary numbers:

typedef struct imaginary_number {

 float real_part;

 float imag_part;

} IMAG_NUM;

We can even have arrays of typedef variables. For example:

IMAG_NUM points[2];

points[0].real_part= 3.0;

points[0].imag_part= 1.0;

points[1].real_part= -3.5;

points[1].imag_part= -2.0;

This was seen in the deck of cards example in a previous worksheet.

Even more complex structures within structures

We can build structs up from other structs. For example, we might want to define a rectangle in the imaginary plane by defining two of its corners. We could do so as follows (assuming the previous definition of IMAG_NUM has already been defined earlier in the program):

typedef struct imag_rect {

 IMAG_NUM corner1;

 IMAG_NUM corner2;

} IMAG_RECT;

We can access the bits of the rectangle as follows:

IMAG_RECT rect1;

rect1.corner1.imag_part= 3.1;

rect1.corner1.real_part= 1.2;

rect1.corner2.imag_part= -2.3;

rect2.corner2.real_part= 1.4;

Pointer Arithmetic

It was hinted earlier that pointers were equivalent to arrays and can be used interchangeably in many circumstances. Recall that:

int i [7];

int *j;

declares i to be an array of 7 integers for which memory is allocated and j is a pointer to an integer. It is worth also remembering that & is the address of operator – when used on a regular variable it returns a pointer to it and also that * is the dereference operator when used on a pointer variable it returns the value it points to. However, we can write j= i; which makes j point at the first element of i (i[0]). We can then use j in the same way as i.

j[0] can be written to or read from in the same way as i[0]. We can also access j[1] through to j[6] just as we could access i.

We can also do the following (given the above definitions):

int i [7];

int *j;

j= i; /* Makes j point at i[0] – same as j= &i[0] */
j= j+1; /* Makes j point at the next integer in memory – i[1] */

j= &i[5]; /* Makes j point at i[5] */

j[0]= 1; /* Sets j[0] (same as i[5]) to 1 */

printf ("%d\n",i[5]); /* Should print 1 */

j[1]= -3; /* Sets j[1] (and i[6]) to –3 */

j= i; /* j points at i[0] again */

j[3]= 5; /* Sets the value of j[3] (same as i[3]) to 5 */

j= j+3; /* j is now pointing at i[3] */

j= 10; / Sets j (same as i[3]) to 10 */

j[4]= 4; /* Error – this is off the end of the array j[4] is i[7]*/

j= i; /* Set j back to pointing at i[0] */

j= j+7; /* j is now pointing off the end of the array*/

 /* This is not an error until we try to access it*/

j= 10; / This is an error though */

IMPORTANT RULE: We can add to and subtract from pointers. Adding one to a pointer moves the pointer to point at the next space in memory available for an object of that type.

What is the point of all this? Well, it is another way to step along an array. In effect, by creating a pointer which points at the start of an array and moving that pointer along the array we can "pretend" that the start of the array is further on. This might be useful in a number of functions – for example, taking a sample mean.

Pointers to struct

Recall from previous lectures and worksheets that if we have a struct as follows:

typedef struct great_mathematician {

 char name[80];

 int year_of_birth;

 int year_of_death;

 char nationality[80];

} MATHEMATICIAN;

We can access elements using the . notation – for example:

MATHEMATICIAN fermat;

fermat.year_of_birth= 1601; /* This margin is too small to contain*/

fermat.year_of_death= 1665; /* more information about Fermat*/

strcpy (fermat.name,"Pierre de Fermat");

strcpy (fermat.nationality, "French");

If, instead of using a structure, we had used a pointer to a structure, it would work like this:

MATHEMATICIAN *cantor;

cantor= (MATHEMATICIAN *)malloc (sizeof (MATHEMATICIAN));

(*cantor).year_of_birth= 1845;

(*cantor).year_of_death= 1918;

/* Remember to close comments with a diagonal slash */

strcpy ((*cantor).name= "Georg Cantor");

strcpy ((*cantor).nationality= "German");

.

.

.

free(cantor);

All that (*cantor). nonsense looks rather confusing. Recall that a * in front of a pointer means dereference or "the value of whatever it is that my pointer is pointing to". Therefore, to get at the year of birth of Cantor we must first dereference his pointer with the * to get at the stuff inside the pointer and then use the dot to get at that part of the struct. Phew!

[*cantor.year_of_birth without the brackets would be incorrect. This would be the same as *(cantor.year_of_birth) and would be used to refer to a pointer to int called year_of_birth which would be part of the struct called cantor – as opposed to the int called year_of_birth which actually is part of the pointer to struct called cantor. This is a subtle but important distinction, the upshot of which is that, without the brackets, your program will not compile because the compiler can't find a pointer to int in the struct].

There's a handy shorter way of saying (*cantor).year_of_birth since this type of expression comes up a lot in C.

MATHEMATICIAN *cauchy;

cauchy= (MATHEMATICIAN *)malloc (sizeof (MATHEMATICIAN));

 /* The sizeof Cauchy was quite large */

cauchy->year_of_birth= 1789;

cauchy->year_of_death= 1857;

strcpy (cauchy->name= "Augustin Louis Cauchy");

strcpy (cauchy->nationality= "French");

.

.

.

free(cauchy);
IMPORTANT RULE: If we have a pointer to a structure, we can access elements within the structure using the -> operator. For example: fptr->name would give us access to the element name of the structure pointed to by the pointer fptr.

Pointers to struct are starting to look a bit complex – so why would anyone use them. There are two obvious reasons (there is a third, even more compelling reason which we will discuss later):

1) We might want to alter the contents of the structure within a function – recall then that we must use pass by reference and write our function to accept a pointer argument. For example:

void set_up_turing (MATHEMATICIAN *turing)

{

 turing->year_of_birth= 1912;

 turing->year_of_death= 1954; /* In tragic circumstances */

 strcpy (turing->name,"Alan Mathison Turing");

 strcpy (turing->nationality,"British");

}

which we could call with:

MATHEMATICIAN alan;

setup_turing (&alan);

2) If our structure is large then it is extremely inefficient to use pass by value. For example, if we have a huge structure:

typedef struct my_huge_struct {

 int nums[10000];

 float more_nums [10000];

 char and_some_chars [10000];

} HUGE;
then we might want to write a function which does something with one of these structs:

/* This is not a good way to go about things */

void print_some_floats_in_struct (HUGE);

.

. Some code here

.

void print_some_floats_in_struct (HUGE huge_struct)

{

 printf ("The third float is %f\n",huge_struct.more_nums[2]);

 printf ("The twentieth is %f\n",huge_struct.more_nums[19]);

}

This may seem to be entirely reasonable – and indeed it will work but there's a catch. Because we're not passing a pointer here we are passing by value. Remember that when we pass by value, we pass a local copy of the variable which is used locally (and destroyed when the function is over). In this case, our program will be making a copy of all those 10000 element arrays. It passes that copy over to the function – which doesn't do a whole lot with it. That's a whole lot of work – and just to print out a couple of floats. In this case it would be much better to pass the struct by reference – i.e pass a pointer: When we pass a pointer, the only thing that is sent to the function is a single pointer – much more efficient than sending a copy of the whole structure:

void efficiently_print_floats (HUGE *);

.

. Some code here

.

void efficiently_print_floats (HUGE *huge_struct)

{

 printf ("The third float is %f\n",huge_struct->more_nums[2]);

 printf ("The twentieth is %f\n",huge_struct->more_nums[19]);

}
Header files and what to put into them

We have talked a lot in other parts of this course about header files. A header file is a file which is included (with a #include statement) in a C program. You have already encountered a number of library header files: <stdio.h> <string.h> <math.h> <stdlib.h>. Basically, any code can be put in a header file – after all, a #include simply shoves the code into your source at that point. However, here's the rules that we recommend for what to include in header files:

1) Defined constants (enum or #define).

2) Prototypes.

3) Only those #include statements which are necessary for the prototypes (for example, if one of your prototypes includes FILE * then you must include stdio.h (otherwise FILE * won't make any sense to the compiler).

4) extern statements for global variables. (see later)

5) typedef and struct statements.

By convention, header files which you have written are included using double quotes rather than angle-brackets like so: #include "myheader.h" The reason for this rule is that it means that people reading your code can readily tell which files you have written and which are system files for the compiler you are using. This can be important, for example, the first few lines of a program are:

#include <stdio.h>

#include <Xlib.h>

#include <sys/types.h>

#include "protos.h"

#include "defs.h"

without the <> and "" notation it would be hard for all but the most experienced programmers to know which files were part of the program and which were part of the operating system. It is conventional to put system header files before user header files.

Writing programs in multiple file

Writing header files is just part of writing C code in multiple files. While you will not need to write C programs in multiple files (indeed most of the programs that you write during this course will be easily small enough that a single file is the best way to go) it is a good technique to know – your project will probably be large enough to be spread across multiple files. Individual .c files are often called modules. Why write C programs where the source code is spread across more than one module? There are a number of reasons:

1) Code which is related can be kept together making routines easier to find.

2) Two programmers can work on the same program by editing different files.

3) On a very large program we can save time by only recompiling part of the program.

4) If, for some reason, we need to rewrite part of a program, the bits being rewritten may be in one file.

The how to of writing programs in multiple modules is fairly straightforward. Remember that you should never have more than one main (indeed you should never have two functions with the same name). If you use a struct or a typedef a #define or an enum in a module then that module should include the header file containing the appropriate bit of code for the struct, typedef, #define or enum. If you are following the rules we set up above, then you're including all these things in header files anyway.

IMPORTANT RULE: Any module that calls a function should have access to the prototype for that function. (That is, in fact, what you've been doing all the time you've been #include ing headers – making sure that the prototype for printf, or whatever, was available). The best way to do that is to put the prototype into a header file and #include the header in any module which wishes to use the function.

The problem with talking about this topic is that any program which is large enough to require multiple files is probably too large to consider in detail. Instead let's consider an abstract example of how we might split up functions between files. Our imaginary program might be a program to deal with the pay packets of university lecturers. The program would need (amongst other things) the following features:

1) Input info for a new lecturer.

2) Delete a lecturer who leaves.

3) Promote a lecturer who gets an individual pay-rise.

4) Read and write this information to disk.

5) Inspect an individual lecturer's record.

6) Print off a months wage packets for all lecturers.

We might therefore decide to split the functions up between files like so:

[image: image1.wmf]

pay.cpp

Main bit of program.

Gets input from user.

Calls appropriate routine

depending on user input.

fileio.cpp

Reads records for

lecturers.

Writes updated records.

Makes back

-

up copies of

files so that nothing is

lost.

printout.cpp

Prints

a "cheque run" on

pay days.

Prints records of

individual lectures for

inspection.

update.cpp

Input file for new

lecturer.

Change file for existing

lecturer (for example

pay rise or name

change).

pay.h

Prototypes and definition

of constants for the

pr

ogram.

Note that all the .cpp files would include the file pay.h. This is quite normal, small C programs in only two or three files will typically only have one or two header files. Larger programs in more files may need more header files.

One common question is "how many functions should be in each module?" Really, it is up to the programmer. Too many is a pain because each module is long, it's hard to remember where in the file you put the code and each module takes a long time to compile. It also may be harder for another programmer looking at your code to know which functions are the most important if they're all together. Too few functions in a module is a pain because you have a large number of modules to maintain. Generally, somewhere between 1 and 100 functions is the right number but it is up to the preference of the individual programmer.

The extern statement
· the extern statement.

The extern statement is used in multiple file programming. It is used to say "the global variable used in this file is initialised in another file". Put extern in front of a global variable when it is declared in another file. In the following example we declare three variables (two arrays and one char) in testprog1.c and use them in testprog2.c

Every file (sometimes called a module) in the program which uses the global variables, except for the one where they are declared, must have them declared as extern to say to the compiler "don't worry about this variable, you will find out about it from another file." If we had forgotten to declare the variables as extern in testprog2.cpp this would be equivalent to having two global variables with the same name in the program (confusing and probably will stop your program working). If we had not declared them at all in testprog2.cpp then the compiler would flag an error because it wouldn't know what farray, iarray and c were.

A recap of syntax learned in week four

We can access elements within a pointer to struct using the -> construct. For example:

typedef struct address {

 int house_no;

 char street[80];

 char town[80];

 int tel_no;

} ADDRESS;

ADDRESS *dave;

dave= (ADDRESS *)malloc(sizeof (ADDRESS));

dave->house_no= 73;

strcpy (dave->street,"Example Street");

strcpy (dave->town,"Madeupton");

dave->tel_no= 0800123456;
The extern statement is used to tell the compiler that a global variable will be declared in another file in the program.

testprog.h

/* function prototypes */

void testfunc(void);

testprog2.cpp

#include "testprog.h"

/* Globals from testprog1.c must be defined as extern here*/

extern float farray[1000];

extern int iarray[500];

extern char c;

void testfunc (void)

{

 printf ("farray[0] is %f\n",

 farray[0]);

 printf ("c is %c\n",c);

 printf ("iarray[0] is %d\n",

 iarray[0]);

 /* Rest of code*/

}

testprog1.cpp

#include "testprog.h"

/* Define some global variables */

float farray[1000];

int iarray[500];

char c;

int main()

{

 c= '\n';

 farray[0]= 1.2;

 iarray[0]= 3;

 testfunc();

 /* Rest of code*/

 return 0;

}

PAGE
5

_1125434155.doc

pay.cpp

Main bit of program.

Gets input from user.

Calls appropriate routine depending on user input.

fileio.cpp

Reads records for lecturers.

Writes updated records.

Makes back-up copies of files so that nothing is lost.

printout.cpp

Prints a "cheque run" on pay days.

Prints records of individual lectures for inspection.

update.cpp

Input file for new lecturer.

Change file for existing lecturer (for example pay rise or name change).

pay.h

Prototypes and definition of constants for the program.

