C Programming Course – COURSEWORK four

Introduction

As usual, questions one and two should be attempted by all students.  Question three is more difficult and is a more difficult optional question for students who wish to earn extra credit.

Question 1
Using structs (see lecture notes) create a library of functions to deal with complex numbers.  You will need to define the following functions:

CMPLX create_complex (double, double);

/* create a complex number from a real and imaginary part */

CMPLX add (CMPLX, CMPLX);

/* Add two complex numbers */ 

CMPLX subtract (CMPLX, CMPLX);

/* Subtract the first number from the second */

CMPLX multiply (CMPLX, CMPLX);

/* Multiply two complex numbers */

void print_complex (CMPLX);

/* Print out a complex number in a reasonable format */

float magnitude (CMPLX);

/* Return the magnitude of the complex number */

In all these examples, CMPLX is the typedef name you used for your complex number.  Hint – obviously the first thing you must do is correctly set up a struct with a typedef for a complex variable.  You can use two floats, one for the real and one for the imaginary part.  Remember, once you've set up the typedef, then CMPLX behaves just like a built in type such as an int, you can return it from functions, use it as a variable type and an argument in a function.

i) Test your library using these functions – for example, you should be able to write:

CMPLX a,b;

a= create_complex (10.1,5.3);

b= create_complex (5.2,6.3);

printf ("a = ");

print_complex(a);

printf ("\n");

printf ("b= ");

print_complex(b);

printf ("\n");

printf ("a + b = ");

print_complex(add_complex(a,b));

printf ("\n");
ii) Print some example output from your library.  Show that it can cope with addition, subtraction and multiplication.  Show that it prints reasonable answers, even when the real or imaginary parts of a complex number are zero.  Produce output to show how your program deals with the following (you can use copy and paste to put output from a window into a document):

(7+2i) + (6 – 2i) = 

(7+2i) – (6 – 2i) = 

(3.1+2i) (-3.1+5i) =

7i(-2+6i) = 

((2 + 4i) – (3.5 + 2i)) (7 + 11i) = 

Question 2 (quite tricky)

Use the complex library you desgined above to print a Mandelbrot set for the region of the complex plane  (–1.5-1.5i, 1.5+1.5i).  Recall that a Mandelbrot set is defined on the complex plane depending on the behaviour of repeating the mapping z->z2+c where z starts as 0+0i and c is the point in the plane we are considering.  A point in the plane is a part of the set if z does not escape to infinity and remains bounded.  Generally speaking, a Mandelbrot set is coloured according to the escape time – that is to say by looking at how quickly the mapping becomes unbounded.  In this case, we will use the following procedure:

a) Two for loops will loop round each part of the complex plane in the region specified– one loop for the real part and one loop for the imaginary part.  The loops should have a step size such that the set you print will cover a reasonable portion of the screen.

b) For each part, calculate the "escape time" by performing the transformation z= z2+c (where c is the current value of our two loop variables).  To calculate the "escape time" first set z= 0+0i.  Loop 100 times and repeat the z=z2+c operation.  If at any point the magnitude of z is greater than 2 then the point has "escaped" – return how many loops it took.  If we get to 100 loops then assume that the point will not escape (obviously  it may still, however, we cannot loop forever to check this).  Use your library functions to calculate z= z2+c and the absolute magnitude.

c) Print a single character according to how quickly the map escaped.  Choose characters which "look good" – an example is shown where '+' means "did not escape" 'O' means "escaped very slowly", 'o' means "escaped fairly slowly", '.' means "escaped" and ' ' (space) means "escaped quickly".

d) At the end of every line print a newline character.

i) Print your Mandelbrot set out.

ii) How would you adapt your program to print a zoomed in region of the set on a smaller region of the complex plane.

iii) What limitations might you find as you continued to zoom in further and further?                                                            
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Question 3 (this is the toughest coursework question but potentially the most interesting)

The map 
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 is a classical example of chaotic behaviour in one dimension. Consider the long term behaviour of the iterates 
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 (ie the function composed with itself n times).

i. For which values of lambda does f(x) form a map from the interval [0,1] to itself? Prove your answer.

ii. Plot a graph of the final behaviour of 
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 as follows:

a: For each value 
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 (say 0.3456) and calculate 
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b: For the next 100 iterations, we will construct co-ordinates for plotting in Maple. We need a list of points of the form 
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 etc. This is made a little tricky by the need to avoid duplicates so as to let Maple plot the graph in a reasonable amount of time – that is to say, if fn(x) is always 0 then we don’t want to plot this point hundreds of times.  One way of doing this is as follows:

· Create two very large one dimensional arrays (xcoord and ycoord) to store the x and y co-ordinates of the points to plot .  Create at the same time, an integer which will say where you are “up to” in this array” – this is referred to as an “array index” – remember to set it to zero.

· Create another one dimensional array, z, that will represent the unit interval split into (say) 100 “boxes”.

· Iterate f(x) for the first 50 times without storing anything – for the next 100 iterations of f(x), put a 1 in the appropriate member of array z.

· Having done this, loop over the array z.  If there is a “1” in that part of the array then we wish to plot a point at this value of 
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and x.  Therefore, store the current value of 
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in xcoord and the place in the unit interval (which is a mapped to z) in ycoord using the “array index”.  Remember to check if we’ve run out of space in the array and also to increment the array index.

c: move on to the next value of 
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d: print your xcoord and ycoord arrays using the 2d_print routine from last week (remember that the number of points you have found is the array index.

iii. Plot this graph in Maple.  What does this graph (referred to as a bifurcation diagram) tell you about the long term behaviour of 
[image: image11.wmf](

)

x

f

?  Comment on the graph.
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