C Programming Course – COURSEWORK Three

Introduction

As usual, questions one and two should be attempted by all students. Question three is more difficult and is a more difficult optional question for students who wish to earn extra credit.

Question One

Write a program which will write files for two dimensional graphs in Maple (no knowledge of Maple is needed for this question but feel free to use another package to get this to work). To plot graphs in two dimensions in Maple your output file should look as follows:

p:=[

[0,1.5],

[1,1.7],

[2,1.9],

[7,1.9]

];
Note that avoiding printing the last “,” can be tricky!

If possible, make your program very general by writing a function which takes four arguments. A file name, two arrays of floats (the x and y co-ordinates) and an int which is the length of the array. The function header might look like this:

void write_2d_array (char filename[], int array_len, double x[],

 double y[])

/* Take the arrays in x and y both of length array_len and write

a file in maple output format to the file named filename */

{

 /* Write your function here */

}

This file can be plotted in Maple with the following command (if it is in the file myplot.out)

> read "myplot.out";

> plot(p, style=point);
Possibly you will have to include information on which drive your file is on:

> read "H:\\myplot.out";

Note also that using : not ; suppresses printing of numbers in the output

Use your graph plotting program to plot:

i) A complete cycle of a sin wave (versus angle)

ii) A cycle of a sin wave plotted against a cos wave (i.e. the x axis is sin the y axis is cos)

iii) Several cycles of a sin wave against a sin wave which has 1.5 times the frequency of the original and is offset by 30 degrees.

Please hand in printout of these figures along with your code.

Question Two

stats.dat in the week 3 directory contains 100 double s each on a separate line. Write code for the following:

i) Read in 100 numbers from the file into an array. checking that it can get the file open and also that it doesn't run out of file before it has read 100 numbers

Hint: fgets returns NULL if it cannot continue reading.

Hint 2: Remember to make the string you are reading into with fgets long enough to hold all of the string – including the trailing '\n'

Hint 3: Check that you're reading in the right numbers and make sure your program will deal correctly with files which are shorter or longer than 100 numbers

Hint 4: You can use atof to convert a string to a floating point number – see below:

#include <stdlib.h>

#include <stdio.h>

int main()

{

double number;

char string[100];

fgets (string, 100, stdin); /* Read from keyboard */

number= atof (string);

printf ("The number read was %f\n",number);

return 0;

}

ii) What are the sample means and sample varinace for this series. Remember the sample mean is given by:
[image: image1.wmf]å

=

=

n

i

i

n

n

x

x

1

 and sample variance is given by:
[image: image2.wmf]å

=

-

-

n

i

n

i

n

x

x

1

2

1

)

(

.

iii) Adapt your program to efficiently calculate the sample mean and sample variance of the series as it is read in. i.e. After it reads each number it prints the sample mean and variance of the series so far. Print out and hand in the sample means and variances of all 100 numbers as they are read in.

Question Three

An important part of computer programming is simulation. In this program we're going to perform about the simplest possible simulation: Sim Bouncy Ball. The program will simulate a ball bouncing on a hard surface.

Recall that:

a) The acceleration due to gravity "g" is 9.8 ms-2 in a downward direction.

b) The "coefficient of restitution" is defined as the ratio of an object's speed just after it bounces/the object's speed just before it bounces (for obvious reasons, it is a number between 0 and 1).

1) Create variables to hold the current height and velocity of the ball, coefficient of restitution, simulation start time, simulation end time and the current simulation time.

2) Initialise the height, velocity and starting simulation time to 0secs.

3) Choose a small time step 'dt' which will be one "cycle" of our iteration.

4) In each time step (until we reach the end time for our simulation)

 a) add dt*g to the velocity.

 b) add dt*v to the height.

 c) add dt to the current time.

 d) if the height is less than zero and the ball's velocity "down" then multiply the velocity by the negative of the coefficient of restitution (to make it instantaneously bounce back up).

 e) print out the ball's current height and the simulation current time at each step.

Hint: Be careful with your signs – be sure that your velocity, acceleration and height all have matching orientations.

i) Run your simulation for height against time for h= 10, initial velocity= 0, coefficient of restitution 0.9 starting at 0 seconds and end time 10 seconds. Choose a sensible time-step. a graph of height versus time – either using maple (as described last week), or using any other graph plotting package you know.

ii) What is the effect of changing the time step to make it longer or shorter?

iii) What are the trade-offs involved in running the simulation with a long and a short time step.

iv) Using maple and the plotting routines you've previously developed in question one, plot the graph for the simulation with two smaller values of coefficient of restitution.

v) A small but constant error is introduced by the fact that the height is changed AFTER the velocity. Describe the nature of this error. Suggest a way to correct this. (Note that changing the height BEFORE the velocity merely changes the error it doesn't correct it).

_1125226876.unknown

_1129025888.unknown

